2024
- Fleischer, Y., Podworny, S. & Biehler, R. (2024). Teaching and learning to construct data-based decision trees using data cards as the first introduction to machine learning in middle school. Statistics Education Research Journa 23(1), Article 3. https://doi.org/10.52041/serj.v23i1.450
- Fleischer, Y., Podworny, S., Biehler, R. (2024). Datenbasiertes Entscheiden. Wie TikTok dein wahres Alter herausfinden kann. Mathewelt – das Arbeitsheft, mathematik lehren 244.
- Höper, L., Schulte, C., & Mühling, A. (2024). Learning an Explanatory Model of Data-Driven Technologies can Lead to Empowered Behavior: A Mixed-Methods Study in K-12 Computing Education. In: Proceedings of the 2024 ACM Conference on International Computing Education Research – Volume 1 (ICER 2024), 326–342. https://doi.org/10.1145/3632620.3671118
- Höper, L., Schulte, C., & Mühling, A. (2024). Students’ Motivation and Intention to Engage with Data-Driven Technologies from a CS Perspective in Everyday Life. In Proceedings of the 2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024). https://doi.org/10.1145/3649217.3653625
- Höper, L. & Schulte, C. (2024). Empowering Students for the Data-Driven World: A Qualitative Study of the Relevance of Learning about Data-Driven Technologies. Informatics in Education 23 (3), S. 593-624. https://doi.org/10.15388/infedu.2024.19
- Höper, L. & Schulte, C. (2024). New Perspectives on the Future of Computing Education: Teaching and Learning Explanatory Models. In Koli Calling 2024: Proceedings of the 24th Koli Calling International Conference on Computing Education Research. https://doi.org/10.1145/3699538.3699558
- Hüsing S., Schulte C., Sparmann S., Bolte M. (2024), Using Worked Examples for Engaging in Epistemic Programming Projects. In SIGCSE 2024: Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, Pages 443–44.
- Hüsing, S., Sparmann, S., Schulte, C., & Bolte, M. (2024). Identifying K-12 Students’ Approaches to Using Worked Examples for Epistemic Programming. Proceedings of the 2024 Symposium on Eye Tracking Research and Applications, 1-7. https://doi.org/10.1145/3649902.3655094
- Katherine M. Miller, Joseph L. Polman, Susan A. Yoon, Jooeun Shim, Vivian Y. Leung, Yen Nguyen, Andee Rubin, Andee Rubin, Traci Higgins, Jessica M. Karch, James K.L. Hammerman, Camillia Matuk, Kayla DesPortes, Anna Amato, Suzanne Dikker, Xavier Ochoa, Esteban Romero, Susanne Podworny, Yannik Fleischer, Rolf Biehler, Justice T. Walker, Amanda Barany, Alex Acquah, Andi Scarola, Sayed Reza, Trang C. Tran, Ralph Vacca, Megan Silander, Peter J. Woods, Cassia Fernandez, Adelmo Eloy, Paulo Blikstein, Roseli de Deus Lopes, Josh Radinsky, Iris Tabak, Victor R. Lee, Dorottya Demszky, Sarah Levine, Josephine Louie (2024). Data and Social Worlds: How Data Science Education Supports Civic Participation and Social Discourse. In: Robb Lindgren, Tutaleni Asino, Eleni A. Kyza, Chee-Kit Looi, D. Teo Keifert & Enrique Suárez (Eds.), ISLS Annual Meeting 2024 June 10-14, 2024 Learning as a Cornerstone of Healing, Resilience, and Community, pp 1863-1870. URL
- Podworny, S. (2024), Eine qualitative Studie zu Data Science Education: Schülerinnen und Schüler analysieren multivariate Daten. Stochastik in der Schule 44(1), 2-10.
- Podworny, S. & Frischemeier, D. (2024). Young learners’ perspectives on the concept of data as a model: what are data and what are they used for? In: S. Podworny, D. Frischemeier, M. Dvir & D. Ben-Zvi (Eds.), Reasoning with data models and modeling in the big data era (pp 15-22). Universitätsbibliothek Paderborn, Paderborn.
- Podworny, S., Fleischer, Y., Biehler, R. (2024). Lebensmittel mit Entscheidungsbäumen klasifizieren. mathematik lehren 244, 8-13.
- Podworny, S., Frischemeier, D., Dvir, M. & Ben-Zvi, D. (Eds..) (2024). Reasoning with data models and modeling in the big data era. Universitätsbibliothek Paderborn, Paderborn. http://dx.doi.org/10.17619/UNIPB/1-1815
2023
- Höper, L. & Schulte, C. (2023), The data awareness framework as part of data literacies in K-12 education, Information and Learning Sciences, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ILS-06-2023-0075 (online publication date: 18 December 2023)
- Hüsing, S., Schulte, C., & Winkelnkemper, F. (2023). Epistemic Programming. In S. Sentance, E. Barendsen, N. R. Howard, & C. Schulte (Eds.), Computer Science Education: Perspectives on Teaching and Learning in School (2nd ed., pp. 291–304). Bloomsbury Academic; Bloomsbury Collections. http://dx.doi.org/10.5040/9781350296947.ch-022
- Höper, L., & Schulte, C. (2023). Paradigmenwechsel vom klassischen zum datengetriebenen Problemlösen im Informatikunterricht. MNU journal, 76(4), 314–320.
- Podworny, S. & Frischemeier, D. (2023). Minisymposium Data Science. In: IDMI-Primar Goethe-Universität Frankfurt (Hrsg.), Beiträge zum Mathematikunterricht 2022: 56. Jahrestagung der Gesellschaft für Didaktik der Mathematik vom 29.08.2022 bis 02.09.2022 in Frankfurt am Main. WTM-Verlag, Münster.
- Sparmann, S., Hüsing, S., & Schulte, C. (2023). JuGaze: A Cell-based Eye Tracking and Logging Tool for Jupyter Notebooks. Proceedings of the 23rd Koli Calling International Conference on Computing Education Research, 1–11. https://doi.org/10.1145/3631802.3631824
- Wilkerson, M. H., Ben-Zvi, D., Clegg, T., Dvir, M., Matuk, C., Podworny, S., Stephens, A. & Zapata-Cardona, L. (2023). K-12 Data Science Education: Outcomes of a National Workshop; International Perspectives; and Next Steps for the Learning Sciences. In J. D. Slottag & E. S. Charles (Eds.), General Proceedings of the ISLS Annual Meeting: Building Knowledge and Sustaining our Community (pp 76-79). ISLS: Montreal, Canada.
2022
- Biehler, R. (2022). Revisiting Fundamental Ideas for Statistics Education From the Perspective of Machine Learning and Its Applications. In S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. Proceedings of the Eleventh International Conference on Teaching Statistics.
- Biehler, R., De Veaux, R., Engel, J., Kazak, S., & Frischemeier, D. (2022). Editorial: Research on Data Science Education. Statistics Education Research Journal, 21(2).
- Fleischer, Y. & Podworny, S. (2022). Teaching machine learning with decision trees in middle school using CODAP. In U.T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th international conference on technology in mathematics teaching (ICTMT 15) (pp. 280–281). Danish School of Education, Aarhus University.
- Fleischer, Y., Biehler, R., & Schulte, C. (2022). Teaching and Learning Data-Driven Machine Learning with Educationally Designed Jupyter Notebooks. Statistics Education Research Journal, 21(2).
- Fleischer, Y., Hüsing, S., Biehler, R., Podworny, S., & Schulte, C. (2022). Jupyter Notebooks for Teaching, Learning, and Doing Data Science. In S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. Proceedings of the Eleventh International Conference on Teaching Statistics.
- Höper, L., Podworny, S., Schulte, C., & Frischemeier, D. (2022). Exploration of Location Data: Real Data in the Context of Interaction with a Cellular Network. Proceedings of the IASE 2021 Satellite Conference.
- Hüsing, S., & Podworny, S. (2022). Computational Essays as an Approach for Reproducible Data Analysis in lower Secondary School. Proceedings of the IASE 2021 Satellite Conference. IASE 2021 Satellite Conference: Statistics Education in the Era of Data Science.
- Podworny, S. & Fleischer, Y. (2022). An approach to teaching data science in middle school. In U.T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th international conference on technology in mathematics teaching (ICTMT 15) (pp. 308–315). Danish School of Education, Aarhus University.
- Podworny, S., Hüsing, S., & Schulte, C. (2022). A place for a data science project in school: Between statistics and epistemic programming. Statistics Education Research Journal, 21(2), 6.
- Podworny, S., Fleischer, Y., & Hüsing, S. (2022). Grade 6 students‘ perception and use of data-based decision trees. In S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. Proceedings of the Eleventh International Conference on Teaching Statistics.
- Podworny S., Fleischer, Y., Stroop, D. & Biehler R. (2022). An example of rich, real and multivariate survey data for use in school. Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), Bozen-Bolzano, Italy. hal-03751842
2021
- Biehler, R., & Fleischer, Y. (2021). Introducing students to machine learning with decision trees using CODAP and Jupyter Notebooks. Teaching Statistics, 43(S1), S133-S142.
- Biehler, R., Fleischer, Y., Budde, L., Frischemeier, D., Gerstenberger, D., Podworny, S., & Schulte, C. (2020). Data science education in secondary schools: Teaching and learning decision trees with CODAP and Jupyter Notebooks as an example of integrating machine learning into statistics education. In P. Arnold (Ed.), New Skills in the Changing World of Statistics Education: Proceedings of the Roundtable conference of the International Association for Statistical Education (IASE), July 2020. ISI/IASE.
- Bovermann, K., Fleischer, Y., Hüsing, S. & Opitz, C., (2021). Künstliche Intelligenz und maschinelles Lernen im Informatikunterricht der Sek. I mit Jupyter Notebooks und Python am Beispiel von Entscheidungsbäumen und künstlichen neuronalen Netzen. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 319-319). DOI: 10.18420/infos2021_w283
- Frischemeier, D., Biehler, R., Podworny, S., & Budde, L. (2021). A first introduction to data science education in secondary schools: Teaching and learning about data exploration with CODAP using survey data. Teaching Statistics, 43(S1), S182-S189.
- Höper, L. (2021). Developing and evaluating the concept data awareness for K12 computing education. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 41, 1–3.
- Höper, L., Hüsing, S., Malatyali, H., Schulte, C., & Budde, L. (2021). Methodik für Datenprojekte im Informatikunterricht. LOG IN: Vol. 41, No. 1.
- Höper, L., Podworny, S., Hüsing, S., Schulte, C., Fleischer, Y., Biehler, R., Frischemeier, D. & Malatyali, H., (2021). Zur neuen Bedeutung von Daten in Data Science und künstlicher Intelligenz. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 345-345). DOI: 10.18420/infos2021_a230
- Höper, L. & Schulte, C., (2021). Datenbewusstsein: Aufmerksamkeit für die eigenen Daten. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 73-82). DOI: 10.18420/infos2021_f235
- Höper, L., & Schulte, C. (2021). Datenbewusstsein im Kontext digitaler Kompetenzen für einen selbstbestimmten Umgang mit datengetriebenen digitalen Artefakten. INFORMATIK 2021.
- Hüsing, S. (2021). Epistemic Programming – An insight-driven programming concept for Data Science. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 42, 1–3.
- Podworny, S., Fleischer, Y., Hüsing, S., Biehler, R., Frischemeier, D., Höper, L. & Schulte, C., (2021). Using data cards for teaching data based decision trees in middle school. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 39, 1–3.
- Podworny, S., Höper, L., Fleischer, Y., Hüsing, S. & Schulte, C., (2021). Data Science ab Klasse 5 – Konkrete Unterrichtsvorschläge für künstliche Intelligenz unplugged und Datenbewusstsein. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 327-327). DOI: 10.18420/infos2021_w278
2020
- Biehler, R., Frischemeier, D., Podworny, S., Wassong, T., Schulte, C., Opel, S. & Schlichtig, M. (2020). Substantielle Digitale Bildung statt nur Anwendung digitaler Werkzeuge – Impulse aus einem Pilotprojekt zu Data Science in der Sekundarstufe. In: Beiträge zum Mathematikunterricht 2019 (pp. 133-136). Münster: WTM-Verlag.
- Budde, L., Frischemeier, D., Biehler, R., Fleischer, Y., Gerstenberger, D., Podworny, S., Schulte, C. (2020). Data science education in secondary school: How to develop statistical reasoning when exploraing data using CODAP. In P. Arnold (Ed), New Skills in the Changing World of Statistics Education. Proceedings of the Roundtable conference of the International Association for Statistical Education (IASE), July 2020, Online. Voorborg, The Netherlands.
- Fleischer, Y., & Biehler, R. (2020). Automatisierte Entscheidungsverfahren als Thema im allgemeinbildenden Mathematikunterricht. In H.-S. Siller, W. Weigel, & J. F. Wörler (Eds.), Beiträge zum Mathematikunterricht 2020 (pp. 273-276). Münster: WTM-Verlag.
2019
- Biehler, R. (2019). Software for learning and for doing statistics and probability – Looking back and looking forward from a personal perspective. In J. M. Contreras, M. M. Gea, M. M. López-Martín, & E. Molina-Portillo (Eds.), Proceedings of the Third International Virtual Congress of Statistical Education. University of Granada.
- Opel, S., Schlichtig, M., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S. & Wassong, T. (2019). Entwicklung und Reflexion einer Unterrichtssequenz zum Maschinellen Lernen als Aspekt von Data Science in der Sekundarstufe II. In: A. Pasternak (Hrsg.), Proceedings zur 18. GI-Fachtagung Informatik und Schule „Informatik für Alle” (S. 285-294). Bonn: Gesellschaft für Informatik.
- Schlichtig, M., Opel, S., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S. & Wassong, T. (2019). Maschinelles Lernen im Unterricht mit Jupyter Notebook. In: A. Pasternak (Hrsg.), Proceedings zur 18. GI-Fachtagung Informatik und Schule “Informatik für Alle” (S. 385). Bonn: Gesellschaft für Informatik.
2018
- Biehler, R., Budde, L., Frischemeier, D., Heinemann, B., Podworny, S., Schulte, C., & Wassong, T. (Eds.). (2018). Paderborn Symposium on Data Science Education at School Level 2017: The Collected Extended Abstracts. Paderborn: Universitätsbibliothek Paderborn. doi.org/10.17619/UNIPB/1-374
- Biehler, R., Frischemeier, D., Podworny, S., Wassong, T., Budde, L., Heinemann, B., & Schulte, C. (2018). Data Science and Big Data in Upper Secondary Schools: A Module to Build up First Components of Statistical Thinking in a Data Science Curriculum. Archives of Data Science, Series A (Online First), 5(1), 28.
- Biehler, R., & Schulte, C. (2018). Perspectives for an interdisciplinary data science curriculum at German secondary schools. In R. Biehler, L. Budde, D. Frischemeier, B. Heinemann, S. Podworny, C. Schulte, & T. Wassong (Eds.), Paderborn Symposium on Data Science Education at School Level 2017: The Collected Extended Abstracts (pp. 2-14). Universitätsbibliothek Paderborn.
- Heinemann, B., Budde, L., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S., & Wassong, T. (2018). Data Science and Big Data in Upper Secondary Schools: What Should Be Discussed From a Perspective of Computer Science Education? Archives of Data Science, Series A, 5(1), P26,-18.
- Heinemann, B., Opel, S., Budde, L., Schulte, C., Frischemeier, D., Biehler, R., Podworny, S. & Wassong, T. (2018). Drafting a Data Science Curriculum for Secondary Schools. Proceedings of the 18th Koli Calling International Conference on Computing Education Research – Koli Calling ’18, (17), 1–5.